Friday, May 22, 2020

Erectile Dysfunction ( Ed ) - 1017 Words

I have selected erectile dysfunction (ED) as my topic of discussion this week. ED is such a prevalent health issue, there are so may myths regarding the issue. One of the most common myths that I think we may all have heard of from our elderly patients â€Å"I can get it up because I am just too old†. I hope to further explore this health issue and be able to provide knowledge information to our patients in the future. Below is a helpful link that can assess how much we know about the facts of ED. I scored very low the first time before exploring further marterials regarding the topic. Give it a try, and then read the information below afterwards. http://www.webmd.com/erectile-dysfunction/rm-quiz-erectile-dysfunction ED is a very common sexual dysfunction, is occurs in men. The chances of ED increase with age, however, it is not an unavoidable part of aging. ED can be inability, inconsistent ability or able to maintain brief period of erection that is firm enough for sexual intercourse (Arcangelo, 2013). ED can increase stress, decrease self-confidence and leads to relationship problems. It could be the initial signs and symptoms of other health issues (Mayo Clinic, 2016). Causes and pathophysiology ED is any disruption during the sequence of events: nerve impulses from the brain travel through the spinal column stimulate the muscles, veins, arteries and fibrous tissues. The combination of physical and psychological put one at risk for ED (Arcangelo, 2013). Physical causesShow MoreRelatedErectile Dysfunction : Causes, Effects, And A Focus On Treatments2324 Words   |  10 PagesErectile Dysfunction: Causes, Effects, and a Focus on Treatments â€Å"Sex.† The media portrays sex to be easy, problem-less, and enjoyable all the time. Although this may be the case for some, for others, sex can be a serious struggle. Research shows that sexual dysfunction is common with 43% of women and 31% of men (DiMeo, 2006). In addition, around 10% of men aged 40 to 70 years old have complete erectile dysfunction, yet very few seek medical help (O’Leary, Barada, Costabile, 1996). SexualRead MoreUse Of Diction And Its Effects On Adult Men With Erectile Dysfunction1139 Words   |  5 Pagestowards adult men with erectile dysfunction, abbreviated ED (Medicines - EMC). It is stated that about 30 million men in the United States suffer from ED (Viagra). In Viagra commercials and advertisements, blunt diction is utilized to highlight the common insecurities of men, which creates this idea that in order to fulfill one’s manliness, then an individual would have to take Viagra. In this particular advertisement, I noticed key ploys to entice a man suffering from ED to take Viagra as a meansRead MoreEssay on Late Adulthood Sexuality1429 Words   |  6 Pagesfrequently with increasing age, and the best way to overcome any difficulties is through open communication with your partner, which can bring a couple closer together than ever before. Sexual difficulties come in all forms. The common term, sexual dysfunction, is defined as problems that interfere with the initiation, consummation, or satisfaction with sex. They occur in both men and women and are independent of sexual orientation (Davidson, 2003). As men grow older, a decrease in their hormone levelsRead MoreHypertension ( Htn ) Is A Major Public Health Issue Affecting 70 Million African American Males Essay2139 Words   |  9 Pagesdiagnosed with HTN also have a diagnosis of erectile dysfunction (ED), both of which when left untreated can have a negative impact on quality of life. ED has been defined by Adebusoye et al., (2012), the lack of sufficient sexual intercourse due to inability of a penile erection in male. Compounding the high incidence of HTN and ED among African-American males, is the problem of non-adherence to prescribed anti-hypertensive medications. Real or perceived ED associated with the adverse side effectsRead MoreThe Problem Of Erectile Dysfunction1165 Words   |  5 Pagesclaims? See details in the review! Erectile dysfunction otherwise known as impotence is a common problem among men. Studies have shown that the probability for men to be affected by ED, at some point in their life is high. Similarly, ED has affected as many as 80 million men worldwide. There are direct causes of ED and there are also risk factors, which everyman is exposed to, to impotence. Many synthetic pharmaceuticals have been formulated to manage the problems of ED. On the other hand, there areRead MoreNursing Interventions And Research : Erectile Dysfunction1479 Words   |  6 PagesRunning head: NURSING INTERVENTIONS AND RESEARCH: ERECTILE DYSFUNCTION Nursing Interventions and Research: Erectile Dysfunction Sarah Camp, Lauren Urban, Kaylin Camacho NURSING INTERVENTIONS AND RESEARCH: ERECTILE DYSFUNCTION 2 Nursing Interventions and Research: Erectile Dysfunction Erectile dysfunction (ED), also known as impotence, is a common male sexual dysfunction that typically occurs later in adulthood and is characterized by the inability toRead MoreCauses And Treatment Of Erectile Dysfunction1015 Words   |  5 PagesCauses and Treatment of Erectile Dysfunction By Michael Guralnik | Submitted On October 28, 2013 Recommend Article Article Comments Print Article Share this article on Facebook Share this article on Twitter Share this article on Google+ Share this article on Linkedin Share this article on StumbleUpon 1 Share this article on Delicious Share this article on Digg Share this article on Reddit Share this article on Pinterest Erectile Dysfunction It refers to the inability of a male to sustainRead MorePrescribing Drugs And Its Effects On Children1739 Words   |  7 Pageswhat are the risks? Well, besides the many well-known side effects, including stunted growth, sleep problems, personality changes, suicidal thoughts, heart attacks and strokes, doctors have now added priapism and the possibility of permanent erectile dysfunction to the list. ADHD drugs and priapism According to this press release from the U.S. Food and Drug Administration, many ADHD drugs, including those containing methylphenidate products, atomoxetine, and even those containing amphetamine productsRead MoreThe Fight For Erectile Dysfunction Medicines944 Words   |  4 Pagesand regular revolution is sweeping the marketplace for erectile dysfunction medicines - Cialis. Most men and women would possibly not even be conscious of it. Lilly ICOS, the pharmaceutical alliance, which launched the blockbuster drug Cialis, announced that the drug has executed 1 b illion bucks in international revenue when you consider that launching in Europe less than two years back. Correctly Cialis has end up the top Erectile Dysfunction healing in France, because January 2005, centered on theRead MoreErectile Dysfunction ( Impotence )1262 Words   |  6 PagesErectile dysfunction (impotence) is the inability to get and keep an erection firm enough for sexual intercourse. Male sexual arousal is a complex process that involves the brain, hormones, emotions, nerves, muscles and blood vessels. Erectile dysfunction can result from a problem with any of these. Likewise, stress and mental health concerns can cause or worsen erectile dysfunction. Having erection issues can cause stress, affect your self-confidence and contribute to relationship problems. Recent

Friday, May 8, 2020

Summary Of I Have A Dream And The Ballot Or The Bullet

Try to paint a picture of what the 1960s was like. What was one of the most defining characteristic of the 1960s? The Cold War or the Vietnam War? While those two events were undoubtedly important aspects of the 1960s, there was a war going on at America’s doorstep every day–the Civil Rights Movement. Throughout the 1960s, numerous civil rights activists lead even more events creating a tense and electric atmosphere on the home front. Two key men in the Civil Rights Movement, Martian Luther King Jr. and Malcolm X, were on opposite ends of the spectrum on how to deal with the injustice and inequality bestowed upon African Americans. King, leader of the Southern Christian Leadership Conference, preached peace. Malcolm X, a Muslim who†¦show more content†¦He uses repetition to emphasize negative connotations: â€Å"America is just as much a colonial power as... America is just as much a colonial power as†¦Ã¢â‚¬  (Malcolm X, 4). Malcolm X continues to use r epetition to shed light on the injustice African Americans face through things such as â€Å"false promises† (6) and the â€Å"con game† (8) which the American political system allows. Malcolm X highlights these aspects to illicit emotion from his audience. Once these emotions consume the listeners, they can become convinced that violence is the sole solution. To complement their arguments, both men employ the help of allusions. King alludes to the Bible as his way of empowering his followers and encouraging nonviolent practices. â€Å"we will not be satisfied until justice rolls down like waters, and righteousness like a mighty stream† (King 2). It is important that King make these connections in his speech because it allows him to receive respect from his audience. Because many consider the Bible as higher order, these allusions add to King’s ethos, making him more charismatic. King also emphasizes pathos by alluding to Isaiah 40 verses four and five: â€Å"I have a dream that one day every valley shall be exalted, and every hill and mountains shall be made low†¦Ã¢â‚¬  (3). He provides his audience with multiple sources of hope throughout his speech, bonding the African American society together. Comparable to King, Malcolm XShow MoreRelatedLiberty or Death1755 Words   |  8 Pagesnot too sure about rising up against British rule. At the beginning of the â€Å"Speech to the Virginia Convention,† Patrick Henry uses the either or fallacy when he tells the audience, â€Å"I consider it as nothing less than a question of freedom or slavery. He uses this fallacy to convince the audience that they only have two options, freedom or slavery, when there are really more options. It also makes the situation seem very serious (Henry 226). As the speech continues Patrick Henry says, â€Å"Suffer notRead MoreFigurative Language and the Canterbury Tales13472 Words   |  54 Pagesalliteration: repetition of initial consonant sounds. It serves to please the ear and bind verses together, to make lines more memorable, and for humorous effect. †¢ Already American vessels had been searched, seized, and sunk. -John F. Kennedy †¢ I should like to hear him fly with the high fields/ And wake to the farm forever fled from the childless land. -Dylan Thomas, â€Å"Fern Hill† 3. allusion: A casual reference in literature to a person, place, event, or another passage of literature, often withoutRead MoreLas 432 - Genetically Modified Foods Essay14589 Words   |  59 PagesBrown | Outline Abstract by Brenda Brown and Tony Balch 3 Thesis Statement and Summary by Kelly Baker and Brenda Brown 4 GMO Technology by Vanessa Brogsdale 5 I. What are GMO’S? II. Scientific Techniques and Experiments History of GMO by Vanessa Brogsdale 12 I. Biotechnology Timeline II. Advantages and Disadvantages Political and Legal Issues by Brenda Brown 16 I. U.S. Laws and Regulations II. Current Political Issues III. What are the Possible HealthRead MoreStephen P. Robbins Timothy A. Judge (2011) Organizational Behaviour 15th Edition New Jersey: Prentice Hall393164 Words   |  1573 Pagesdesignations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps. Library of Congress Cataloging-in-Publication Data Robbins, Stephen P. Organizational behavior / Stephen P. Robbins, Timothy A. Judge. — 15th ed. p. cm. Includes indexes. ISBN-13: 978-0-13-283487-2 ISBN-10: 0-13-283487-1 1. Organizational behavior. I. Judge, Tim. II. Title. HD58.7.R62 2012 658.3—dc23 2011038674 10 9 8 7 6 5 4 3 2 1 ISBN 10: 0-13-283487-1Read MoreLogical Reasoning189930 Words   |  760 Pages.............................................................................................. 144 Seeking a Second Opinion ............................................................................................................ 147 Trust Me, I Know It on Good Authority ..................................................................................... 149 Suspending Belief...................................................................................................................Read MoreMarketing Mistakes and Successes175322 Words   |  702 Pagesstudies. I. Title. HF5415.1.H37 2009 658.800973—dc22 2008040282 ISBN-13 978-0-470-16981-0 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 PREFACE Welcome to the 30th anniversary of Marketing Mistakes and Successes with this 11th edition. Who would have thought that interest in mistakes would be so enduring? Many of you are past users, a few even for decades. I hope you will find this new edition a worthy successor to earlier editions. I think

Wednesday, May 6, 2020

When Small Means Big The Impact of Nanotechnology Free Essays

string(22) " of this small world\." A revolution in science and technology, which will significantly impact our daily lives, is looming in the horizon. The scientific community is now excited by changes that could be brought about by the multidisciplinary discipline of nanoscience and nanotechnology, which is comprehensively defined as â€Å"[r]esearch and technology development at the atomic, molecular, or macromolecular levels, in the length of approximately 1–100 nm range, to provide a fundamental understanding of phenomena and materials at the nanoscale, and to create and use structures, devices, and systems that have novel properties and functions because of their small size. The novel and differentiating properties and functions are developed at a critical length scale of matter typically under 100 nm. We will write a custom essay sample on When Small Means Big: The Impact of Nanotechnology or any similar topic only for you Order Now Nanotechnology research and development includes integration of nanoscale structure into larger material components, systems, and architectures. Within these larger scale assemblies, the control and construction of their structures and component devices remain at the nanoscale†. (National Research Council 2002, cited in Dreher 2004). Although technically encompassing any device measuring at least 1,000 nanometers—a nanometer (from Greek ‘nano’, meaning dwarf) is one-billionth of a meter (The Royal Society The Royal Academy of Engineering 2004)—much of the work being done presently focuses on materials smaller than 100 nm (Gupta et al 2003) since it is at this level that materials exhibit unique physical and chemical properties that can be harvested to convey improvements to engineered materials (i.e. enhanced magnetic properties, better electrical and optical activity, and superior structural integrity) (Thomas Sayre 2005). Ralph Merkle, as cited by Gupta et al (2003), noted that atomic configuration, to an extent, determines physical and chemical characteristics of materials, using as examples carbon in diamond, or silica from sand. From this perspective, the manufacturing techniques we are using today appear crude since we are moving molecules by heaps and mounds, and, therefore, are manufacturing devices that could still be improved for accuracy and precision (Gupta et al 2003). Nanotechnology, according to Gupta et al, aims to explore and exploit the possibility of designing at the molecular and atomic levels, and producing a generation of novel products that boast of greater strength, lighter weight and better precision (2003). Technically nanotechnology is not something new. Ball (2003) notes that nanoscale devices have been, and are currently being, utilized by organisms in their daily functioning. He cites, for instance, the proteins that serve as motors to flagella of motile bacteria, as readers and interpreters of the genetic code, or as miniature solar panels in plants that gather sunlight for photosynthesis (Ball 2003). The possibility of harnessing this potential within the environment and put them to practical use has been floated in the scientific community as early as the 1940s, when von Neumann forwarded the idea of manufacturing systems or machines that are capable of self-replication, which could potentially lower production costs (Gupta et al 2003). Richard Feynman in 1959, in an address to the American Physical Society entitled ‘There Is Plenty of Room at the Bottom’, advanced the possibility that, similar to what we are doing at the macroscopic scale, we could maneuver atoms to where we want them to be, and produce materials that would solve the problem of manufacture and reproduction (Buxton et al 2003; Gupta P et al 2003). In 1986, K Eric Drexler provided a picture of nanotechnological use in the future in his book Engines of Creation, where humans are utilizing self-replicating nanoscale robots in daily life processes (Ball 2003). The move from the drawing board to actual application, however, has been very recent—as evidenced by the relatively few nanotechnology products—fuelled by theoretical and laboratory progress which showed that, indeed, systems can be built from molecules and atoms maneuvered at the microscopic scale (Gupta et al 2003). L’Oreal recently introduced in the market sun creams that contain nano-sized grains of titanium dioxide, which absorbs ultraviolet light, but without the ‘smeared chalk’ appearance of regular creams (Ball 2003). This same technology, according to Ball (2003) was taken a step further when it was found that titanium dioxide particles become reactive when exposed to ultraviolet light, leading to the development of self-cleaning tiles and glasses—titanium-coated tiles and glasses that use the sun’s energy to burn up dirt stuck to their surfaces. In the filed of medicine, nanotechnology is currently being utilized with state-of -the-art technology to combat genetic diseases (Dunkley 2004). In addition to these, researches are currently undergoing, exploring the various possible applications of nanotechnology in various fields. For instance, in the medical sciences, the development of nanorobots could aid in precise, and rapid, cellular repair and regeneration, delivery of drugs at the site where it is needed, destruction of cancerous cells, or unblocking of clogged blood vessels (Dunkley 2004). The capacity to detect disease through alterations in body chemistry or physiology is also a possibility through nanotubes or nanowires coated with detector molecules (Buxton et al 2003). Molecular imaging, according to Buxton et al (2003) will also provide us with a view of the human body beyond gross anatomic structures, since this would utilize molecules that would home to tissues affected by specific disease processes. Environmental problems we face today, such as air pollution or oil spills, could be remedied through nanorobots designed to clean these toxic elements from th e air we breath or the water we drink (Dunkley 2004). The material sciences will also significantly benefit from nanotechnology, with the promise of development of stronger and lighter plastics, computers with faster processors and increased memory storage, ion storage for batteries (which will improve performance), quick-charging battery cars, and fuel cells for motor-driven devices that are environment-friendly and energy efficient (Gupta et al 2003). Perhaps a bit too far in the future, Dunkley even forwards the idea that it might be possible, with nanorobots moving atoms and molecules, for us to create common and everyday things from our own backyard, moving manufacturing to the domain of the household with a wheelbarrow and a shovel (2004). Because of the great promise held by nanotechnology, governments worldwide are investing in nanoresearch, to further refine our understanding of this small world. You read "When Small Means Big: The Impact of Nanotechnology" in category "Essay examples" Global investment in nanotechnology has been estimated to be â‚ ¬5 billion, according to the Royal Society and the Royal Academy of Engineering (2004). The European Union pledged to spend â‚ ¬1 billion (Ball 2003), whereas Japan allocated $800M in 2003 (The Royal Society The Royal Academy of Engineering 2004). The United States is willing to spend nearly $3.7 billion for nanotechnology from 2005 to 2008, with nearly $500 million allocated for research funding (Dunkley 2004; The Royal Society The Royal Academy of Engineering 2004; Thomas Sayre 2005). The considerable change nanotechnology can bring, as well as the huge sums of money governments worldwide are currently spending to make this a reality, has sparked some questions from various sectors on the impact of nanotechnologies, not only to the scientific fields to which it will be applied, but to the society in general. In the biological sciences, for instance, the primary concern is the possible toxicity exposure—and chronic exposure, at that—to nanoparticles can bring about, since these materials have the capability of interacting with cells and cellular organelles, and hence, alter body physiology (Ball 2003; The Royal Society The Royal Academy of Engineering 2004). Dreher (2004), and Thomas and Sayre (2005) have recently reviewed the evidence on the health impact of nanotechnology exposure, and found that there is a paucity of evidence to encourage or preclude use of nanotechnologies in humans pending full investigations and detailed evidence supporting or debunking the same. Ball (2003) notes that, in the same way as new drugs or devices, nanotechnology must be viewed as a potential health hazard unless proven otherwise. Large scale production in the future would necessitate hazard-testing and human exposure assessment, to minimize risks (The Royal Society The Royal Academy of Engineering 2004). The significant economic impact of nanotechnologies, according to experts, may not be felt in the short-term, although this must be viewed with caution, since it is entirely difficult to predict what impact a developing technology that has not yet realized its full potential will have (The Royal Society The Royal Academy of Engineering 2004). The differing capacities of developed, developing and underdeveloped countries to participate in the nanotechnology race has also raised concerns that it might intensify the economic gap between these nations, leading to what is referred to as a ‘nanodivide’ (The Royal Society The Royal Academy of Engineering 2004). Finally, patenting of nanotechnology—which is advantageous since it would, though economic incentive, encourage other individuals to contribute to scientific progress—may stifle creativity or innovation when a broad one is granted (The Royal Society The Royal Academy of Engineering 2004). Another area of concern is military and defense capability. The development of new devices—pervasive sensors, improved clothing and armor, and enhanced information and communication exchange—could be viewed both as opportunities and threats, depending on who uses them, and how they are used (The Royal Society The Royal Academy of Engineering 2004). But more than this, the Royal Society (2004) cautions that the secrecy coupled with development of technologies for defense use might fuel public distrust, and heighten the understanding that nanotechnology is being developed primarily, if not entirely, for military ends. Ethical issues pervading the socio-cultural impact of nanotechnologies are also a concern. For instance, development of new nanodevices may cause a significant change in employment patterns, role perception, education patterns, and eventually family life (Dunkley 2004). The end result, still according to Dunkley (2004) would be a shift in our present definition of inequality, poverty, and class, and finally, the way we construe society in general. If what Dunkley predicted would come true (i.e. manufacturing at our own backyard), then the capacity to produce would be entirely dependent on having the necessary resources for this production, which brings to fore the concern of concentration of the harvests of nanotechnology in the hands of a few. Although nanomanufacturing could present the solution to hunger and homelessness, the question remains whether it will alter our perception of the material world where we move (Dunkley 2004). The possibility of devices being used to store personal information, although enhancing personal security on the one hand, also raises the possibility of violation of civil liberties, especially when collection and distribution of the same is made without the consent of the person involved, or access to these information could be limited to the hands of the few who could develop and control personal information databases or systems (The Royal Society The Royal Academy of Engineering 2004). Finally, the possibility of radical human enhancement, or the creation of humans in the future, through nanotechnology (in conjunction with biotechnology and information technology), though a remote possibility, still carries with it the burden of resolving whether these creations are really human, and whether they also possess souls like we do (Dunkley 2004). In the same vein, this new capability would radically change, if not totally abolish, our perception of religion and morality (The Royal Society The Royal Academy of Engineering 2004). On a lesser plane, the possibility of nanotechnology extending human longevity to hundreds of years will definitely alter our view of aging and death (Dunkley 2004). What, then, lies in store for us in the future with nanotechnology? Actually, no one can tell, since nanotechnology is but a frontier—which, to Melbin is a pattern of sparse settlement in space or time—or what Dunkley (2004) describes as relatively ‘unsettled and a wilderness waiting to be discovered’. Until such time, therefore, that the full potential of nanotechnology has been realized, or at least understood through research, we may endlessly speculate about how nanotechnology will affect our daily lives and society in general, who will benefit from its, what and capabilities will it provide us. The concerns, however, raised in this paper are valid considerations of the impact the future application of nanotechnologies will have, and this necessitates caution and vigilance on the part of all stakeholders. References Ball P, 2003 (23 Jun), ‘Nanotechnology Science’s Next Frontier or Just a Load of Bull?’, New Statesman, vol. 132, no. 4643, pp. 30-31. Buxton DB, Lee SC, Wickline SA, Ferrari M for the Working Group Members, 2003 (02 Dec), ‘Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group’, Circulation, vol. 108, pp. 2737-2742. Dreher KL, 2004, ‘Health and environmental impact of nanotechnology: Toxicological assessment of manufactured nanoparticles’, Toxicological Sciences, vol. 77, pp. 3–5. Dunkley RWS, 2004, ‘Nanotechnology: Social Consequences and Future Implications’, Futures, vol. 36, no. 10, pp. 1129-1132. Gupta P, Malhotra R, Segal MA Verhaeren MYFJ, 2003, ‘Recent trends in nanotechnology’, in R Gulati, A Paoni M Sawhney (eds), Kellogg on Technology Innovation, Wiley, Hoboken, NJ, pp. 261-283. The Royal Society The Royal Academy of Engineering, 2004, Nanoscience and nanotechnologies: opportunities and uncertainties, The Royal Society The Royal Academy of Engineering, London. Thomas K Sayre P, 2005, ‘Research strategies for safety evaluation of nanomaterials, Part I: Evaluating the human health implications of exposure to nanoscale materials’, Toxicological Sciences, vol. 87, no. 2, pp. 316–321. How to cite When Small Means Big: The Impact of Nanotechnology, Essay examples